0=x^2+22x+56

Simple and best practice solution for 0=x^2+22x+56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=x^2+22x+56 equation:



0=x^2+22x+56
We move all terms to the left:
0-(x^2+22x+56)=0
We add all the numbers together, and all the variables
-(x^2+22x+56)=0
We get rid of parentheses
-x^2-22x-56=0
We add all the numbers together, and all the variables
-1x^2-22x-56=0
a = -1; b = -22; c = -56;
Δ = b2-4ac
Δ = -222-4·(-1)·(-56)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{65}}{2*-1}=\frac{22-2\sqrt{65}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{65}}{2*-1}=\frac{22+2\sqrt{65}}{-2} $

See similar equations:

| 3j-(-8)=14 | | -3j-1=-2 | | −5(5x+2)−x+2= −86 | | −8=2z−18 | | d+15=3 | | 19+x/4=13 | | 2x-15=-x+180 | | −5(5x+2)−x+2=  −86− | | 39=5(w+5)-7w | | 3(d-5)+12=6 | | -5/r+40=46 | | 4(8−6x)=5x−26 | | x-1+2x=20 | | 7m+19/2=3 | | 1/3+1/4+1/x=1 | | 7m+12/19=13 | | 2/5h+2=4/5h+6 | | 3(d-5(+12=6 | | -5(-4w+4)-w=5(w-2)-4 | | 50-5x=20+10x | | 9=5÷8x-1÷4+3 | | |h|=-8 | | -7=7(w+5) | | 2(3x+7)=40+12 | | 4x-41=4x+35 | | 3·(x-2)+1=1/2x+2·(x+2) | | 20-4(3x-1)=x-9 | | 5x+2(3x−7)=−20+11x+6 | | 6(1.5)+2s=18 | | 3/4+x=-3/4 | | 262=41-x | | 15=w/3-10 |

Equations solver categories